
Stronghold.2.Deluxe.[PL].DVD.[P57].iso Latest Version [EXCLUSIVE]
asus m5a78l m usb3 driversasus rog pg279q driversorcs must die 2 modlenovo ideapad z585 driversleague of legends extra bonus rpcumulative update for windows 10 version 1511 for x64-based systems (kb3124263)acronis true image 2011d-link wua-2340naruto ultimate ninja storm traineronkyo ht-r593 receiver diablo 3 desolate sands crash fix sony dcr trv 17 sound blaster x-fi mb5 download lsi 9211-4i call of duty black ops 3 beta codes windows movie maker icon left 4 dead cabin in the woods stronghold black ops 3 htc one max android 5.0 zte handset usb driver m5a99x evo r2.0 drivers msi 760gm-p34 (fx) corsair void drivers download asus crossblade ranger drivers wireless mobile mouse 1850 driver
asrock deadly 9 h310 chipset driverfree amazon fire stick driver asus m5a78l m usb 3 driversasus rog pg279q drivers orcs must die 2 modlenovo ideapad z585 driversleague of legends extra bonus rpcumulative update for windows 10 version 1511 for x64-based systems (kb3124263)acronis true image 2011d-link wua-2340naruto ultimate ninja storm traineronkyo ht-r593 receiver diablo 3 desolate sands crash fix sony dcr trv 17 sound blaster x-fi mb5 download lsi 9211-4i call of duty black ops 3 beta codes windows movie maker icon left 4 dead cabin in the woods stronghold black ops 3 htc one max android 5.0 zte handset usb driver m5a99x evo r2.0 drivers msi 760gm-p34 (fx) corsair void drivers download asus crossblade ranger drivers wireless mobile mouse 1850 driver 81555fee3f
The Allied Nations in the Middle East.To buy Stronghold 2 Deluxe edition click here?Hard copy.upgraded to Download Stronghold 2 Deluxe.Q:
Using Riemann Zeta Function in order to find the value of an integral
I am trying to solve this question and I need some help. I've never used the Riemann Zeta Function so I need some help in order to find the answer:
Find the value of
$$\int_2^5 \frac\log^3(x)x^2\log(x)dx$$
A:
Let $I(a) = \int_2^5 \frac\log^3(x)x^2\log(x) dx$. Note that if you integrate by parts then
$$I(a) = -3 \log^2(5) + 3 I(2) - 2 I(1).$$
We may use the fact that
$$I(a) = \int_2^a \frac\log^3(x)x^2 dx + \int_a^5 \frac\log^3(x)x^2 dx = \int_2^a \frac\log^3(x)x dx + \int_a^5 \frac\log^3(x)x dx - 2 I(a),$$
to see that
$$I(5) = \int_2^5 \frac\log^3(x)x dx - 2 I(5).$$
Here we recognize that $I(1) = \zeta(3)$, and $I(2) = \zeta(4)$. In the end,
$$I(5) = 2 \zeta(3) + 2 \zeta(4) - 2 \zeta(5) = \frac25 \zeta(3) - 2\zeta(5).$$
Alternatively, this is a partial fraction decomposition with denominator $x^2 \log(x)$, which can be written
$$\frac1x^2 \log(x) = \frac13x^2 + \frac2x^2 \log(x) - \frac2x^2$$
then,